May 4, 2012

The WHO Manual of Diagnostic Imaging

0 comments

Download Here : The WHO Manual of Diagnostic Imaging

Note : 
Bagi yang belum punya akun di 4shared.com silakan daftar dulu ...Caranya gampang kok :)

February 8, 2012

TOMOGRAFI

0 comments
Tomografi adalah teknik radiografi untuk memperlihatkan struktur jaringan anatomi yang berada pada sebuah bidang jaringan dimana struktur anatomi diatas dan dibawahnya terlihat kabur ( Principles of radiographic Imaging An Art and science, 1992), sedangkan Menurut Richard R Chalton (1992) , tomografi adalah teknik radiografi untuk memperlihatkan gambaran lapisan-lapisan tubuh tertentu dengan cara mengaburkan lapisan atas dan bawahnya.

Prinsip tomografi adalah mendapatkan gambaran yang lebih jelas dari suatu lapisan tertentu dari organ tubuh dengan cara menggerakkan 2 diantara 3 komponen,. 3 komponen tersebut adalah tube, kaset dan obyek. Tabung sinar x dan image receptor ( kaset ), bergerak berlawanan arah pada sebuah titik yang dinamakanfulcrum ( pivot point ) fulcrum merupakan titik gerak dari tabung sinar x danimage receptor terkonsentrasi (X-ray equipment for student radiographer, 1975). 



Dari gambar diatas diterangkan tentang prinsip dan teknik tomografi, yaitu pada permulaan eksposi tabung dan film pada posisi T1 dan F1, selama eksposi tabung akan bergerak berlawana dengan film dan pergerakan keduanya akan berakhir pada posisi T2 dan F2. Focal plane adalah bidang yang berada tepat pada titik fulcrum. Struktur gambaran yang setinggi fokal plane akan terproyeksi jelas yaitu titik 2, sedangkan daerah diatas focal plane yaitu pada titik 1, dan dibawahnya titik 2 akan terproyeksi kabur. Dalam tomografi ada dua hal yang harus diperhatikan yaitu pengaturan film dan pengaturan fulcrum atau pivot point.

Pesawat tomografi terdiri dari beberapa bagian. Adapun bagiannya, sebagai berikut:
a. Tiang penghubung ( Telescopic Rod ) adalah yang menghubungkan tabung rontgen dengan tempat kaset yang dapat bergerak sewaktu eksposi ( movement cassette tray ) , tiang penghubung ini menghubungkan fokus pada tabung sinar X sampai pada cassette tray.
b. Fulcrum, merupakan titik gerak yang dapat diatur ketinggiannya sesuai dengan kedal;aman lapisan yang dikehendaki.
c. Tabung sinar X , dapat bergerak sealama eksposi.
d. Meja kontrol ( control table ) berfungsi mengatur faktor eksposi.
e. Panel control berfungsi mengatur penyudutan tabung, jarak sinar X dengan meja, ketinggian fulcrum dan mengatur kolimasi. 


Tebal lapisan gambar yang tergambar dalam foto tergantung pada besar kecilnya sudut pergerakan tabung. Makin kecil sudut maka lapisan yang tergambar akan semakin tebal, sudut yang makin besar maka lapisan yang tergambar akan semakin tipis.


sumber : Thomas S Curry, Chistensen’s Physic of Diagnostic Radiology, 1935 )


Gambar. pengaruh penyudutan tabung sinar x terhadap tebal dan tipisnya lapisan yang tergambar dalam tomogram( Associate Professor Department of Radiology Medical College of Georgia )

Waktu yang digunakan pada tomografi lebih panjang dengan waktu pergerakan tabung agar sinar x yang keluar pada tabung sesuai dengan lamanya pergerakan tabung. Karena waktu yang panjang maka harus diimbangi dengan mA yang kecil.

Dalam teknik tomografi Ada beberapa jenis pergerakan tomografi dilihat dari pergerakan tabung sinar x dan Kaset, yaitu:
1). Line to line movement.
Merupakan jenis pergerakan yang paling sederhana Yaitu kaset dan tabung bergerak pada garis lurus dengan arah berlawanan (paralel). Jenis pesawat tomografi yang digunakan pada pemeriksaan BNO-IVP adalah line to line sistem ( system janker ) yaitu kaset dan tabung bergerak pada baris lurus dengan arah berlawanan (paralel).

2). Arc to line movement ( system danatom )
Pada pergerakan ini tabung sinar x bergerak membentuk garis lengkung sedangkan kaset bergerak pada garis lurus dengan arah berlawanan, selama pergerakan FOD selalu sama dan OFD berubah-ubah, sehingga faktor magnifikasi tidak tetap sehingga gambaran yang dihasilkan lebih baik dari line to line.

3) Arc to arc movement
pada pesawat jenis ini tabung sinar x dan film bergerak membentuk garis lengkung yang hampir membentuk lingkaran dengan arah berlawanan. FOD dan OFD tetap sehingga hasil gambaran lebih baik dari arc to line movement.


Selain itu ada juga jenis-jenis pergerakan tabung pada pesawat tomografi yaitu :
1). Pergerakan Rectilinear
Pengaburan yang disebabkan oleh pergerakan linier Tabung sinar –x membentuk garis lurus searah dengan meja pemeriksaan namun berlawanan arah. Menampilkan struktur gambaran yang memanjang. Pergerakan ini biasanya digunakan untuk tomografi thorax, tulang iga yang letaknya tidak sejajar dengan pergerakan tabung sinar –x.

2). Pergerakan Sirkular
Pergerakan tabung sinar-x dan film membentuk lingkaran sejajar satu sama lainPergerakan ini menghasilkan gambaran yang melingkar. Bentuk melingkar ini dibentuk oleh tabung sinar x dan film yang sejajar, digunakan untuk tulang tulang pada umumnya

3). Pergerakan Elips
Pergerakan ini menghasilkan gambaran yang elips. Bentuk elips ini dibentuk oleh tabung sinar x dan film. Meskipun memiliki efisiensi gerakan pengkaburan yang lebih tinggi dari gerakan linier, kualitas pengkaburan jauh lebih sedikit dari pengkaburan dari pergerakan sirkular atau lebih kompleks pergerakannya pada pergerakan secara hiposikloidal dan spiral. Pergerakan ini baik untuk tulang tulang ekstremitas.

4). Pergerakan Hipocycloidal
Pergerakan tabung sinar-x dan film bergerak seperti clover leaf . Merupakan pergerakan yang sangat komplek. Pergerakan ini mampu menampilkan gambaran dengan nilai ketipisan kurang dari 1 mm, digunakan untuk tulang tulang telinga dalam dan lainnya. 

5). Pergerakan Spiral
Pergerakan tabung sinar-x dan film bergerak seperti spiral.

6). Pergerakan Sine wave
Pergerakan tabung sinar-x dan film bergerak seperti gelombang dan digunakan untuk tulang tulang kecil seperti foramen opticum.

Gambar. Jenis-jenis pergerakan tabung pada pesawat tomografi ( Thomas S Curry, Chistensen’s Physic of Diagnostic Radiology, 1935 )
Sumber

February 2, 2012

Google Body Browser

1 comments
Google Body Browser merupakan aplikasi 3D berteknologi tinggi yang dianggap sebagai terobosan dalam studi anatomi. Google Body Browser adalah revolusi pemahaman anatomi tubuh manusia dan jalur cepat penelitian medis. Penggunaan layanan Google Body Browser sangat mudah digunakan karena navigasi nya mirip pada Google Earth.

Layanan Google yang Satu ini akan sangat berguna bagi sobat-sobat yang ingin belajar anatomi tubuh manusia secara on-line.

Google Body Browser juga memperkenalkan teknologi internet terbaru bernama WebGL. WebGL memungkinkan grafik 3D yang rumit dapat dijalankan pada halaman web biasa, tanpa perlu plug-in browser khusus seperti Flash atau Java.

Buat yang sudah penasaran bagaimana Google Body Browser silakan klik disini

Tapi sebelum itu pastikan dulu sobat menggunakan browser terbaru karena WebGL hanya support pada browser terbaru. untuk memudahkan sobat  berikut ini adalah daftar browser yang telah support WebGL :

4. Opera






February 1, 2012

Seorang Mahasiswa Mematahkan Pernyataan Seorang Profesor

0 comments

Seorang Profesor dari sebuah universitas terkenal menantang mahasiswa-mahasiswa nya dengan pertanyaan, "Apakah Tuhan menciptakan segala yang ada?"
Seorang mahasiswa dengan berani menjawab, "Betul, Dia yang menciptakan semuanya".
"Tuhan menciptakan semuanya?" Tanya professor sekali lagi. 
"Ya, Pak, semuanya" kata mahasiswa tersebut. 
Profesor itu menjawab, "Jika Tuhan menciptakan segalanya, berarti Tuhan menciptakan Kejahatan. Karena kejahatan itu ada, dan menurut prinsip kita bahwa pekerjaan kita menjelaskan siapa kita, jadi kita bisa berasumsi bahwa Tuhan itu adalah kejahatan". 
Mahasiswa itu terdiam dan tidak bisa menjawab hipotesis professor tersebut. Profesor itu merasa menang dan menyombongkan diri bahwa sekali lagi dia telah membuktikan kalau Agama itu adalah sebuah mitos.

Mahasiswa lain mengangkat tangan dan berkata, "Profesor, boleh saya bertanya sesuatu?". 
"Tentu saja," jawab si Profesor, 
Mahasiswa itu berdiri dan bertanya, "Profesor, apakah dingin itu ada?" 
"Pertanyaan macam apa itu? 
Tentu saja dingin itu ada. Kamu tidak pernah sakit flu ? "Tanya si professor diiringi tawa mahasiswa lainnya". Mahasiswa itu menjawab, "Kenyataannya, Pak, dingin itu tidak ada". 
Menurut hukum fisika, yang kita anggap dingin itu adalah ketiadaan panas. Suhu -460F adalah ketiadaan panas sama sekali. Dan semua partikel menjadi diam dan tidak bisa bereaksi pada suhu tersebut. Kita menciptakan kata dingin untuk mendeskripsikan ketiadaan panas." 
Mahasiswa itu melanjutkan, "Profesor, apakah gelap itu ada?" 
Profesor itu menjawab, "Tentu saja itu ada." 
Mahasiswa itu menjawab, "Sekali lagi anda salah, Pak. Gelap itu juga tidak ada. Gelap adalah keadaan dimana tidak ada cahaya. Cahaya bisa kita pelajari, gelap tidak. Kita bisa menggunakan prisma Newton untuk memecahkan cahaya menjadi beberapa warna dan mempelajari berbagai panjang gelombang setiap warna. Tapi Anda tidak bisa mengukur gelap. Seberapa gelap suatu ruangan diukur dengan berapa intensitas cahaya di ruangan tersebut. Kata gelap dipakai manusia untuk mendeskripsikan ketiadaan cahaya." 

Akhirnya mahasiswa itu bertanya, "Profesor, apakah kejahatan itu ada?" 
Dengan bimbang professor itu menjawab, "Tentu saja, seperti yang telah kukatakan sebelumnya". 
Kita melihat setiap hari di Koran dan TV. Banyak perkara kriminal dan kekerasan di antara manusia. Perkara-perkara tersebut adalah manifestasi dari kejahatan." 
Terhadap pernyataan ini mahasiswa itu menjawab, "Sekali lagi Anda salah, Pak. Kajahatan itu tidak ada. Kejahatan adalah ketiadaan Tuhan. Seperti dingin atau gelap, kajahatan adalah kata yang dipakai manusia untuk mendeskripsikan ketiadaan Tuhan. Tuhan tidak menciptakan kajahatan. Kajahatan adalah hasil dari tidak adanya kasih Tuhan dihati manusia. Seperti dingin yang timbul dari ketiadaan panas dan gelap yang timbul dari ketiadaan cahaya." 
Profesor itu terdiam............ 
Nama mahasiswa itu adalah...............







Albert Einstein

MONITORING DOSIS PERORANGAN

0 comments
Dalam setiap pemanfaatan radiasi pengion, faktor keselamatan terhadap para pekerjanya harus mendapat prioritas utama. Hal tersebut didasarkan pada Peraturan Pemerintah (PP) RI No.63 Tahun 2000 tentang Keselamatan & Kesehatan terhadap Radiasi Pengion (a,b,g,x,n), yang umum disebut keselamatan radiasi. Dalam pemanfaatannya, penerimaan dosis radiasi oleh para pekerja radiasinya diusahakan serendah mungkin sehingga tidak melampaui nilai batas dosis yang diizinkan oleh Badan Pengawas. Menurut SK 01/Ka-Bapeten/V-99 disebutkan bahwa Nilai Batas Dosis bagi pekerja radiasi adalah 50 mSv/tahun (seluruh tubuh), lensa mata: 150 mSv/tahun serta tangan, kaki & kulit : 500 mSv/tahun.
Untuk layanan pemantauan dosis  perorangan eksternal digunakan dosimeter perorangan yaitu dosimeter film dan dosimeter termoluminisensi (TLD). Dalam pemakaiannya, kedua dosimeter tersebut dimasukkan ke dalam suatu wadah/holder, yang umum dikenal dengan film dan TLD badge. Pada operasional rutin, umumnya diperlukan 2 dosimeter untuk setiap pekerja radiasi yang dipantau, satu dosimeter digunakan untuk melakukan pekerjaannya sementara dosimeter yang dipakai sebelumnya diproses dan dievaluasi. Biasanya, frekuensi pertukaran dosimeter disesuaikan dengan jenis dosimeter yang digunakan, yaitu 1 bulan untuk film badge dan 3 bulan untuk TLD badge. Pada saat ini, sudah diberikan jasa layanan pemantauan dosis perorangan eksternal kepada instansi/perusahaan/rumah sakit baik pemerintah maupun swasta pengguna radiasi pengion [foton (sinar-x,g), beta dan neutron] dan tercatat ± 400 pengguna dengan jumlah pekerja radiasinya 3903 orang. Kegiatan ini bertujuan untuk menentukan dosis tara perorangan eksternal bagi pekerja radiasi dengan menggunakan film dan TLD badge.

a. Film Badge

Film badge merupakan salah satu alat pencatat dosis radiasi yang diterima oleh pekerja radiasi sesuai dengan PP.No.11 tahun 1975, tentang Keselamatan terhadap Pekerja Radiasi, maka setiap individu yang bekerja di unit pelayanan radiologi diharuskan memakai alat pencatat radiasi tersebut. 

Dektetor yang digunakan disini berbentuk film fotografi, yang berbentuk emulsi butiran-gutiran perak halida, biasanya perak bromida (AgBr), ditunjang oleh matrik gelatin dan kemudian dilapisi bahan"acetat". Film ini berfungsi sebagai detector karena apabila terkena radiasi, ion Ag+ akan berubah menjadi Ag dan disebut sebagai bayangan “latent”. detektor ini dapat menyimpan atau merekam dosis radiasi yang mengenainya secara akumulasi selama film belum diproses. Pemprosesan dilakukan dengan larutan kimia yang akan memunculkan bayangan hitam pada film tersebut. Tingkat kehitaman bayangan film sebanding dengan intensitas radiasi yang mengenainya. Semakin banyak radiasi yang mengenainya, tingkat kehitaman film akan semakin pekat. Holder film selain sebagai berfungsi sebagai tempat film, juga sebagai (filter) untuk membedakan jenis dan energi radiasi yang menenainya. 

Energi radiasi pengion yang mengenai film akan menyebabkan beberapa butiran AgBr terionisasi(AgBr). Semakin besar dosis radiasi yang diserap semakin banyak butiran AgBr yeng terionisasi. Dalam proses pencucian dengan larutan pengembang (developer),butiran-butiran Ag+ yang terionisasi akan berubah menjadi logam perak yang berwarna hitam. Proses pencucian kedua dengan larutan fixer akan melarutkan molekul-molekul AgBr sisa,Sedangkan yang telah menjadi logam perak akan terikat kuat seabagai bayangan hitam laten. Terlihat bahwa tingkat kehitaman bayangan akan sesuai dengan banyak dosis yang telah mengenainya. 


Dosimetri film badge ini terdiri dari film,seperti film yang digunakan untuk rongten gigi, dan tempat film (holder). Holder film dosimetri ini mempunyai fungsi penting yaitu sebagai penyaring atau filter. Terdapat beberapa jenis filter seperti plastik setebal 0,5 mm dan 3mm,aluminium 0,6mm,tembaga 0,3 mm,campuran Sn 0,8 mm dan Pb 0,4 mm serta campuran Cd 0,8 mm dan Pb 0,4 mm. Masing-masing jenis filter tersebut berfungsi untuk menyaring jenis radiasi atau energi radiasi yang berbeda.Dosimetri film badge ini mempunyai sifat akumilasi yang cukup baik.Film-film yang ada dipasaran dapat digunakan sampai 3 bulan. Keuntungan film lain dengan adanya filter-filter, film badge ini dapat membedakan jenis radiasi yang mengenai dan mempunyai rentang energi pengukuran yang lebih besar daripada dosimetri saku. Keuntungan lain,filmnya, setelah diproses dapat digunakan untuk perhitungan yang lebih teliti serta dapat didokumentasikan. Sedangkan kelemahannya adalah untuk mengetahui dosis yang telah mengenai harus diproses secara khusus dan membutuhkan peralatan tambahan untuk membaca tingkat kehitaman film,yaitu densitometer.
film badge harus dipakai dengan benar sehingga dapat menerima dosis secara akurat dan dapat merepresentasikan hasil yang diterima dari film badge tersebut. Seluruh bagian dari film badge harus dikenakan pada tubuh antara leher dan pinggang,biasanya sering diletak pada ikat pinggang atau saku baju. Klip-on film badge biasanya sering digunakan pada saat melakukan Xray atau gamma,yang biasanya berbentuk jam tangan.

b. Thermoluminesence Dosimetry (TLD)

Bahan kristal tertentu yang sering digunakan pada TLD adalah Litium Florida (LiF). LiF dapat menyimpan/merekam dosis radiasi yang diberikan padanya. Kemudian, TLD akan memancarkan cahaya (foton) jika dipanaskan pada suhu tertentu. Prinsip kerjanya seperti efek fotolistrik. Ketika LiF mendapatkan dosis radiasi dengan energi tertentu, maka elektron-elektron akan dalam kristal LiF akan naik ke level energi yang lebih tinggi. Kebanyakn elektron tersebut akan kembali ke level energi awalnya (keadaan dasar), namun ada beberapa elektron yang terjebak dalam impuritas. Apabila LiF dipanaskan, maka elektron yang terjebak tersebut akan terangkat ke level energi yang lebih tinggi dimana dari sana elektron-elektron tersebut akan kembali ke keadaan dasar dengan memancarkan cahaya (foton). Banyaknya cahaya (foton) yang dipancarkan akan proporsional dengan energi yang terserap dari pemberian dosis radiasi. Selanjutnya, banyaknya cahaya (foton) tersebut akan dibaca oleh TLD reader. Penggunaan TLD telah banyak digunakan dalam instansi-instansi yang berhubungan dengan radiasi untuk personel monitoring pekerja radiasi, biasanya dalam bentuk chip yang dikemas dalam wadah seperti kartu tanda pengenal.
Pada proses penyerapan radiasi beberapa material akan menyimpan energi yang diserap pada kondisi yang metastabil (kurang stabil). Jika materi tersebut diberikan energi secara sistematis energi metastabil tersebut akan dikeluarkan dalam bentuk ultraviolet, cahaya tampak atau infra merah, fenomena tersebut dikenal dengan nama proses luminisensi. Proses penyimpanan energi radiasi terjadi diawali saat radiasi mengenai materi, pada saat tersebut electron bebas dan “hole” terbentuk. Pada materi yang memiliki sifat luminisensi, terdapat suatu daerah “storage trap” yang terletak di antara pita konduksi dan valensi (lihat gambar…). Electron dan “hole” yang terbentuk akan bersatu lagi atau terjebak di dalam “storage trap”. Jumlah electron yang terjebak akan sebanding dengan jumlah radiasi yang mengenai material luminisensi. Elektron yang terjebak akan keluar dan bersatu kembali dengan “hole” jika detector luminisensi diberikan energi dalam bentuk panas secara sistematis. Pada saat electron dan “hole” bergabung akan dipancarkan cahaya yang akan ditangkap oleh penguat cahaya PMT (Photomultiplier Tube). Bahan yang memiliki sifat luminisensi disebut dengan nama Thermoluminescenct detector atau TLD. Beberapa jenis materi yang bersifat luminisense antara lain CaSO4:Mn,Dy, LiF:Mg,Ti, LiF:Mg,Cu,P. Sebelum digunakan TLD harus dipanaskan terlebih dahulu pada suhu tertentu untuk menghapus energi yang masih tersisa didalam TLD. 

Sistim pambacaan TLD secara garis besar terdiri dari planchet, PMT dan elekrometer. Planchet berfungsi untuk meletakkan dan memanaskan materi TLD, PMT berfungsi menangkap cahaya luminisensi dan mengubah menjadi sinyal listrik, dan memperkuat sinyal akhir, elektrometer berfungsi mencatat sinyal PMT dalam satuan arus atau muatan. 
Sinyal hasil pembacaan TLD disebut kurva pancar atau “glow curve”. Kurva pancar diperoleh dengan memberikan panas dengan laju kenaikan panas secara konstan sampai suhu tertentu, dan kurva digambarkan sebagai fungsi suhu.



Sumber

January 31, 2012

BAHAN KONTRAS

0 comments
Bahan Kontras merupakan senyawa-senyawa yang digunakan untuk meningkatkan visualisasi (visibility) struktur-struktur internal pada sebuah pencitraan diagnostic medik.

Bahan kontras dipakai pada pencitraan dengan sinar-X untuk meningkatkan daya attenuasi sinar-X (Bahan kontras positif) yang akan dibahas lebih luas disini atau menurunkan daya attenuasi sinar-X (bahan kontras negative dengan bahan dasar udara atau gas). Selain itu bahan kontras juga digunakan dalam pemeriksaan MRI (Magnetic Resonance Imaging), namun metode ini tidak didasarkan pada sinar-X tetapi mengubah sifat-sifat magnetic dari inti hidrogen yang menyerap bahan kontras tersebut. Bahan kontras MRI dengan sifat demikian adalah Gadolinium. 

Penggunaan media kontras pada pemerikasaan radiologi bermula dari percobaan Tuffier pada tahun 1897, dimana dalam percobaannya ia memasukkan kawat kedalam ureter melalui keteter., sehingga terjadi bayangan ureter dalam radiograf. Percobaan selanjutnya yaitu dengan menggunakan kontras cair untuk menggambarkan anatomi dari traktus urinarius. Kontras tersebut diantaranya : koloid perak,bismut,natrium iodida,perak iodida, stronsium klorida, dan sebagainya. Berangsur-angsur metode tersebut mulai ditinggalkan karena menimbulkan komplikasi yang berbahaya. Infeksi, trauma jaringan, terjadinya emboli, dan deposit perak dalam ginjal merupakan akibat sampingan yang tidak bisa dihindari.

Berpijak dari pengalaman-pengalaman terdahulu kemudian para ahli radiologi sepakat untuk megadakan pembaharuan dalam pemakaian media kontras pada pemeriksaan radiologi. Dan pada tahun 1928 seorang ahli urologi, Dr.Moses Swick bekerjasama dengan Prof.Lichtwitz,Binz, Rath, dan Lichtenberg memperkenalkan penemuannya tentang media kontras iodium water-soluble yang digunakan dalam pemeriksaan urografi secara intravena. Media kotras yang berhasil disintesa, diantranya dalah :sodium iodopyridone-N-acetic acid yang disebut Urosectan-B (Iopax), dan sodium oidomethamate yang disebut Uroselectan-B (Neoiopax). Dari segi radiograf kedua macam media kotras tersebut memberikan hasil yang memuaskan, namun dari pasiennya masih menimbulkan efek yang merugikan, yaitu : mual dan muntah. Selanjutnya Dr.Swick dan kawan-kawan melanjutkan usahanya dengan mengembangkan Iodopyracet yang sementara waktu bisa menggantikan kedudukan Neoiopax dalam pemerikasaan Urografi intra vena.

Usaha mengembangkan media kontras pun terus berlanjut. Mulai pertengahan tahun 1950 semua jenis media kontras untuk pemakaian secara intravaskuler untuk pemakaian secara intravaskular mulai mengalami pergantian. Mulai periode ini media kontras intravaskular menggunakan molekul asam benzoat sebagai bahan dasarnya dengan mengikat tiga atom iodium. Dari hasil uji coba membuktikan bahwa media kontras jenis ini memiliki kelebihan dibanding dengan jenis media kontras sebelumnya. Jenis media kontras tersebut diantarannya ; acetrizoate dibuat tahun 1950, diatrizoate tahun 1954, metrizoate tahun 1961, iothalamate tahun 1962, iodamide tahun 1965 dan ioxithalamate tahun 1968. Akhirnya media kontras yang dapat pula digunakan secara intravaskular secara kontinyu terus mengalami penyempurnaan.

Dari hasil penelitian membuktikan bahwa ionisitas dan osmolalitas merupakan kunci utama terjadinya keracunan pada pasien. Kemudian mulai tahun 1969 dr.Torsten Almen mengembangkan jenis media kontras non-ionik dengan osmolalitas yang cukup rendah. Mula-mula ia mengadakan penelitian terhadap keluarga Metrizamide yang sebelumnya dipakai pada pemeriksaan mielografi. Dengan diciptakannya media kontras water soluble untuk pemeriksaaan mielografi, penggunaan secara intravaskular mulai dipelajari. Hasil akhir penelitian memberikan jalan yang terbaik untuk segala macam pemeriksaan radiologi yang menggunakan media kontras iodium non-ionik water-soluble secara intravaskular

Ada dua jenis bahan baku dasar dari bahan kontras positif yang digunakan dalam pemeriksaan dengan sinar-X yaitu barium dan iodium. Sebuah tipe bahan kontras lain yang sudah lama adalah Thorotrast dengan senyawa dasar thorium dioksida, tapi penggunaannya telah dihentikan karena terbukti bersifat karsinogen. 

a. Barium sulfat

Bahan kontras barium sulfat, berbentuk bubuk putih yang tidak larut. Bubuk ini dicampur dengan air dan beberapa komponen tambahan lainnya untuk membuat campuran bahan kontras. Bahan ini umumnya hanya digunakan pada saluran pencernaan; biasanya ditelan atau diberikan sebagai enema. Setelah pemeriksaan, bahan ini akan keluar dari tubuh bersama dengan feces.



b. Iodium

Bahan kontras iodium bisa terikat pada senyawa organik (non-ionik) atau sebuah senyawa ionic. Bahan-bahan ionic dibuat pertama kali dan masih banyak digunakan dengan tergantung pada pemeriksaan yang dimaksudkan. Bahan-bahan ionic memiliki profil efek samping yang lebih buruk. Senyawa-senyawa organik memiliki efek samping yang lebih sedikit karena tidak berdisosiasi dengan molekul-molekul komponen. Banyak dari efek samping yang diakibatkan oleh larutan hyperosmolar yang diinjeksikan, yaitu zat-zat ini membawa lebih banyak atom iodine per molekul. Semakin banyak iodine, maka daya attenuasi sinar-X bertambah. Ada banyak molekul yang berbeda. Media kontras yang berbasis iodium dapat larut dalam air dan tidak berbahaya bagi tubuh. Bahan-bahan kontras ini banyak dijual sebagai larutan cair jernih yang tidak berwarna. Konsentrasinya biasanya dinyatakan dalam mg I/ml. Bahan kontras teriodinasi modern bisa digunakan hampir di semua bagian tubuh. Kebanyakan diantaranya digunakan secara intravenous, tapi untuk berbagai tujuan juga bisa digunakan secara intraarterial, intrathecal (tulang belakang) dan intraabdominally – hampir pada seluruh rongga tubuh atau ruang yang potensial.

1. Bentuk dan Susunan Kimia

.Berdasarkan tahap-tahap perkembangannya, bentuk dan susunan kimia media kontras iodium dapat dibedakan menjadi :

a. Sebelum tahun 1950

Pada periode ini semua media kontras iodium bersifat ionik, dimana dalam susunan kimianya terdapat ikatan ion. Ion-ion penyusun media kontras tersebut terdiri dari ; kation dan anion. Adapun contoh bentuk-bentuk media kontras intravaskular yang disintesa sebelum tahun 1950 adalah sebagai berikut :


b. Pertengahan Tahun 1950

Mulai pertengahan tahun 1950 ditetapkan penggunaan bahan dasar molekul benzoat yang setiap molekulnya mengikat tiga atom iodium. Pada tahap ini perkembangan dibagi menjadi :

1). Bahan Kontras Ionik

Ion-ion penyusun media kontras terdiri dari kation (ion bermuatan positif) dan anion (ion bermuatan negatif). Kation terikat pada asam radikal (-COO-) rantai C1 cincin benzena. Kation juga memberikan karakteristik media kontras, dimana setiap jenis memberikan karakteristik yang berbeda satu sama lain. Ada beberapa macam kation yang digunakan dalam media kontras, di antaranya :

a). Sodium (Natrium)

Sifat sodium dalam media kontras adalah menurunkan kekentalan (viskositas), dan lebih sedikit menimbulkan reaksi anafilaksis karena dapat mengurangi mnuculnya zat histamin yang mengakibatkan reaksi alergis. Di lain pihak sodium bersifat lebih korosif terhadap sel endotelium dan parenkim organ tertentu, sehingga lebih toksik dari pada zat lain.

b). Meglumine ( NMG ; N-Methylglucamine)

Meglumine memiliki sifat toksik yang lebih kecil dibanding sodium, akan tetapi meglumine memberikan efek diuretik (mengurangi konsentrasi iodium dalam urin). Pada jenis asam dan konsentrasi yang sama meglumine lebih kecil menimbulkan kenaikan tekanan darah, bradikardia, dan konvulsi dibanding sodium.

c). Ethanolamine

Zat ini memiliki sifat yang tidak dimiliki oleh sodium maupub meglumine, yaitu tidak mempunyai sifat racun dan memiliki viskositas yang rendah, tetapi zat ini menimbulkan vasodilatasi yang cukup kuat. Selain bahan tersebut diatas kadang-kadang pula digunakan kation dari calsium (Ca) dan magnesium (Mg).Untuk memperoleh sifat media kontras yang dikehendaki pada pemeriksann radiologi tertentu biasanya dilakukan penggabungan antara beberapa jenis kation dalam satu jenis media kontras.

(1). Bahan Kontras Ionik Monomer

Bahan Kontras ionik manomer merupakan bentuk bahan kontras ionik yang memiliki satu buah cincin asam benzoat dalam satu molekul




(2). Bahan Kontras Ionik dimer

Merupakan media kontras ionik yang memiliki dua buah cincin asam benzoat dalam satu molekul. Salah satu contoh bentuk dan susunan kimia jenis bahan kontras ini adalah Ioxaglate (Hexabrix) yang merupakan media kontras ionik dimer pertama dibuat ;



2). Bahan Kontras Non-ionik.

Du dalam susunan kimia media kontras non-ionik sudah tidak dijumpai lagi adanya ikatan ion antar atom penyusun molekul. Kalau dalam media kontras ionik terdapat dua partikel penyususn molekul (kation dan anion) maka dalam bahan kontras non-ionik hanya ada satu partikel penyusun molekul sehingga memiliki karakteristik tersendiri. 

b). Bahan kontras Non-ionik Manomer

Bahan kontras ini berasal dari media kontras ionik monomer yang dibentuk dengan mengganti gugus karboksil oleh gugus radikal non-ionik yaitu amida (-CONH2). 

2). Bahan Kontras Non-ionik Dimer

Pembentukan struktur kimia bahan kontras ini melalui proses penggantian pada gugus karboksil media kontras ionik dimer juga oleh gugus radikal non-ionik, yang pada kahir sisntesa menghasilkan perbandingan iodium terhadap partikel media kontras 6 : 1.

Bahan kontras iodium yang umum digunakan:


Osmolalitas

Konsentrasi molekul yang secara aktif memberikan tekanan osmotik larutan, sehingga memberikan kemampuan suatu pelarut (air) melewati suatu membran. Dapat dinyatakan dengan milliosmol per liter (osmolaritas) atau milliosmol per kilogram Air (H2O) pada suhu 37oC (Osmolalitas).

Osmolalitas tidak dipengaruhi oleh ukuran partikel namun nilainya tergantung dari ; Jumlah partikel dan konsentrasi iodium. Bahan kontras ionik memiliki jumlah partikel lebih besar daripada bahan kontras non-ionik karena dalam media kontras ionik terdapat dua partikel (kation dan anion) sehingga osmolalitas dua kali lebih besar.


Efek Samping 

Bahan Kontras iodium yang modern merupakan obat-obat yang aman; reaksi-reaksi berbahaya bisa terjadi tapi tidak umum. Efek samping utama dari radiokontras adalah reaksi anafilaktif dan nefropati .

- Reaksi-Reaksi Anafilaktif

Reaksi-reaksi anafilaktif jarang terjadi (Karnegis dan Heinz, 1979 dkk., 1987; Greenberger dan Patterson, 1998), tapi bisa terjadi sebagai respon terhadap bahan kontras yang disuntikkan atau yang diberikan lewat mulut dan rectal dan bahkan memperburuk pyelografi. Gejalanya mirip dengan reaksi-reaksi anafilaksis, tapi tidak diakibatkan oleh respon kekebalan yang diperantarai IgE. Pasien-pasien yang memiliki riwayat reaksi-reaksi kontras, berisiko tinggi untuk mengalami reaksi-reaksi anafilaktif (Greenberger dan Patterson, 1988; Lang dkk., 1993). Pengobatan dini dengan kortikosteroid telah terbukti dapat mengurangi kejadian reaksi-reaksi yang berbahaya (Lasser dkk., 1988; Greenberger dkk., 1985; Wittbrodt dan Spinler, 1994). 

Reaksi-reaksi anafilaktif bisa mulai dari urticaria dan gatal-gatal, sampai bronchospasma dan edema facial dan laryngeal. Untuk kasus-kasus urtikaria yang sederhana dan gatal-gatal, Benadryl (diphenhydramine) lewat mulut atau IV (intravenous) bisa diberikan. Untuk reaksi-reaksi yang lebih parah, antara lain bronchospasma dan edema leher atau wajah dapat diberikan inhaler albuterol, atau epinefrin IV atau subcutaneous, ditambah diphenhydramine mungkin diperlukan. Jika respirasi terganggu, saluran udara harus dibebaskan .

- Nefropati yang Ditimbulkan oleh Medium Kontras 

Nefropati oleh media kontras dapat ditimbulkan baik oleh peningkatan kreatinin darah lebih besar dari 25% atau peningkatan mutlak kreatinin darah yang mencapai 0,5 mg/dL. Ada tiga faktor yang terkait dengan meningkatnya risiko nefropati yang dipengaruhi oleh medium kontras, yaitu: gangguan ginjal sebelumnya (seperti penurunan kadar kreatinin < 60 mL/menit (1.00 mL/detik), diabetes yang telah ada sebelumnya, dan volume intravascular yang berkurang (McCullough, 1997); Scanlon dkk., 1999). 

Osmolalitas bahan kontras diyakini sangat berperan dalam nefropati. Idealnya, bahan kontras harus isoosmolar terhadap darah. Bahan kontras beriodium yang modern biasanya nonionic, tipe-tipe ionic yang terdahulu biasa menyebabkan efek yang lebih berbahaya dan tidak digunakan lagi. Untuk meminimalisir risiko terjadinya nefropati akibat medium kontras, maka berbagai tindakan bisa dilakukan yang kesemuanya telah dianalisis dalam sebuah meta-analisis yaitu : 
1. Dosis media kontras harus diupayakan serendah mungkin, meski masih mampu ditambahkan untuk melakukan pemeriksaan . 
2. Bahan kontras bersifat non ionic 
3. Media kontras yang nonionic dan iso-osmolar. Salah satu percobaan terkontrol acak menemukan bahwa sebuah bahan kontras nonionic iso-osmolar lebih baik dibanding media kontras non-ionik low-osmolar. 
4. Hydrasi cairan intravenous dengan larutan garam. Masih ada pertentangan tentang cara yang paling efektif untuk hidrasi cairan intravenous. Salah satu metode adalah 1 mg/kg per jam selama 6-12 jam sebelum dan setelah pemberian kontras. 
5. Hidrasi fluida intravenous dengan larutan garam ditambah sodium bikarbonat. Sebagai sebuah alternatif bagi hydrasi intravenous dengan larutan garam biasa, pemberian sodium bikarbonat 3 mL/kg per jam selama 1 jam sebelumnya, diikuti dengan 1 mL/kg per jam selama 6 jam setelah pemberian bahan kontras diketahui lebih baik ketimbang larutan garam biasa pada salah satu percobaan terkontrol acak. Ini selanjutnya didukung dengan sebuah percobaan terkontrol acak multi-senter, yang juga menunjukkan bahwa hydrasi intravenous dengan sodium bikarbonat lebih baik terhadap 0,9% larutan garam normal. Efek renoprotektif dari bikarbonat dianggap diakibatkan oleh alkalinisasi urin, yang menciptakan sebuah lingkungan yang lebih rentan terhadap pembentukan radikal bebas yang berbahaya. 
6. N-asetilcystein (NAC). NAC, 600 mg secara oral dua kali sehari, pada hari sebelum selama prosedur jika pelepasan kreatinin diperkirakan lebih kecil dari 60 mL/menit (1,00 mL/detik). Sebuah percobaan terkontrol acak menemukan dosis NAC yang lebih tinggi (1200 mg IV bolus dan 1200 mg secara oral dua kali sehari selama 2 hari) dapat membantu (pengurangan risiko relatif sebesar 74%) pasien yang menerima angioplasty koroner dengan volume kontras yang lebih tinggi. Beberapa penelitian terbaru menunjukkan bahwa N-asetilcystein melindungi ginjal dari efek toksik bahan kontras (Gleeson & Bulugahapitiya 2004). Efek ini, tidak merata, beberapa peneliti (seperti Hoffman dkk., 2004) telah mengklaim bahwa efek ini diakibatkan oleh gangguan dengan uji laboratorium kreatinin itu sendiri. Ini didukung oleh kurangnya korelasi antara kadar-kadar kreatinin dan kadar cystatin 

Agen-agen farmakologis lain, seperti furosemida, mannitol, theophylline, aminophylline, dopamine, dan atrial natriuretic peptide telah dicoba, tapi belum ada efek menguntungkan atau justru memiliki efek yang membahayakan (Solomon dkk., 1994; Abizaid dkk., 1999). 
Reaksi Kemotoksik Pasien yang memiliki kelainan pada kelenjar gondok sering mengalami reaksi kemotoksik setelah menjalani pemeriksaan dengan bahan kontras. Sebenarnya atom iodium yang terikat kuat dalam senyawa bahan kontras tidak memberikan pengaruh yang besar. Ia hanya sensitif terhadap ion iodida bebas yang sedikit banyak terdapat dalam bahan kontras. Kenaikan intake iodida inilah yang menyebabkan tirotoksikosis. Kontribusi makanan-laut dan alergi-alergi lain Disini harus ditekankan bahwa dugaan tentang “alergi” makanan laut, yang seringkali lebih didasarkan pada mitos dibanding fakta, bukanlah sebuah kontraindikasi yang cukup terhadap penggunaan bahan kontras beriodum. Sebuah hubungan antara kadar iodium dalam makanan laut dan alergi akibat makanan laut merupakan bagian dari bidang medis. Meski kadar iodine dalam makanan laut lebih tinggi dibanding pada makanan non-laut, namun konsumsi yang terakhir ini melebihi yang pertama dan tidak ada bukti yang menunjukkan bahwa kandungan iodine makanan laut terkait dengan reaksi-reaksi terhadap makanan-laut (Coakley dan Panicek, 1997). 
Data yang ada menunjukkan alergi akibat makanan laut dapat meningkatkan risiko sebuah reaksi yang diperantarai bahan kontras dengan jumlah yang kira-kira sama seperti alergi terhadap buah atau sama dengan yang menyebabkan asma (Shehadi, 1975). Dengan kata lain, lebih dari 85% pasien yang mengalami alergi makanan-laut tidak akan memiliki reaksi yang berbahaya terhadap kontras beriodium (Coakley dan Panicek, 1997). Terakhir, tidak ada bukti yang menunjukkan bahwa reaksi-reaksi kulit yang berbahaya terhadap antiseptic-antiseptik topikal yang mengandung iodium (seperti betadin, povidin) yang banyak hubungannya dengan pemberian bahan kontras IV (Coakley dan Panicek, 1997; can Ketel dan van den Berg, 1990).

sumber: ss-radiology

January 27, 2012

INTERAKSI ULTRASOUND DAN JARINGAN

0 comments
Gelombang suara yang melewati jaringan tubuh dan akan mengalami perubahan-perubahan yang menyebabkan melemahnya suara tersebut.Melemahnya intensitas suara yang melewati jaringan ini disebut atenuasi. 

Ada 3 faktor penyebabnya yaitu: 
1.Pembiasan / penyimpangan berkas suara (DIVERGENSI) 
2.Penyerapan energi suara (ABSORBSI) 
3.Pantulan suara ke luar jaringan (DEFLEKSI) 

  • DIVERGENSI 
Dengan adanya pembiasaan atau penyimpangan berkas suara maka kekuatannnya juga akan tersebar luas sehingga intensitasnya akan menurun. 

  • ABSORBSI 
Absorsi adalah penyerapan sebagian dari kekuatan berkas suara oleh jaringan. Tenaga yang diserap oleh jaringan ini akan terlihat dengan adanya peningkatan suhu jaringan.Semakin tinggi frekuensi suara semakin besar ebsorbsinya,semakin sedikit suara yang dapat diteruskan. Dengan demikian untuk melihat organ-organ tubuh yang terletak didalam rongga perut diperlukan peralatan USG dengan frekwensi yang lebih rendah dari 3 MHz. Untuk visualisasi kelainan mammae di gunakan USG dengan frekuensi tinggi ( 5-7 MHz). jumlah suara yang diabsorbsi juga tergantung pada kekentalan jaringan yang dilewatinya. Semakin kental dan kaku suatu jaringan semakin besar absorbsinya. Tulang menyerap suara 10 kali lebih besar daripada jaringan lunak. Jaringan lunak menyerap 10 kali lebih besar dari pada cairan. 

  • DEFLEKSI 
Sebagian berkas suara yang mengenai permukaan suatu medium akan dipantulkan tergantung pada besarnya/dimensi medium tersebut. Apa bila gelombang suara mengenai batas antara dua media maka sebagian dari gema suara tersebut akan di pantulkan, sebagian lagi di teruskan / di biaskan. Besarnya gema suara yang di pantulkan tergantung pada perbedaan. “acoustic impedance” dari kedua medium tersebut.

Tabel.  Acoustic Impedance
Pada tabel di atas memperlihatkan bahwa Acoustic Impedance udara sangat kecil di bandingkan dengan jaringan tubuh lainnya, akibatnya hampir semua gema suara dan kejaringan tertentu yang melewati udara akan di pantulkan
Tabel. Pantulan dan Tranmisi dari Beberapa Zat
Pantulan dan tranmisi  ultrasound memberikan pengaruh pada penggunaan USG secara klinis yaitu :
1. Untuk menghindari dipantulkannya semua suara yang berhububgab dengan udara, maka diantara tranduser dan jaringan kulit harus diisi dengan coupling agent seperti aquasonic atau jelly.
2. Kita tidak mungkin melihat organ dalam panggul bila udara dalam usus diatasnya menghalangi tranduser untuk melihat target yang kita cari. Keadaan ini dapat diatasi dengan mengisi penuh kandung kencing, sehingga akan mendorong usus keluar dari panggul dan dapat merupakan jendela akustik ( Acoustik window) bagi organ-organ pelvis di bawahnya.
3. Kita dapat menggeser atau memindahkan tranduser keberbagai posisi supaya suara tidak melewati gelembung udara yang berada dalam usus yang terletak diatas organ yang akan kita lihat.
4. Organ yang berada di bawah tulang juga akan kurang jelas karna, 36 – 40 % suara yang mengenainya akan dipantulkan hal ini sedapat mungkin dapat dihindarkan dengan memindahkan posisi tranduser.

January 19, 2012

ALAT PELINDUNG DIRI (APD)

0 comments
Alat Pelindung Diri (APD) adalah kelengkapan yang wajib digunakan saat bekerja sesuai bahaya dan resiko kerja untuk menjaga keselamatan pekerja itu sendiri dan orang di sekelilingnya.

Alat Pelindung Diri atau Perlengkapan proteksi yang biasa digunakan oleh pekerja radiasi adalah :

1. Apron


Apron proteksi tubuh yang digunakan untuk pemeriksaan radiografi atau fluoroskopi dengan tabung puncak sinar x hingga 150 kVp harus menyediakan sekurang – kurangnya setara 0,5 mm lempengan Pb.Tebal kesetaraan timah hitam harus diberi tanda secara permanen dan jelas pada apron tersebut.

Saat ini sudah ada alat proteksi baru yaitu apron dengan desain yang lebih ringan tetapi memenuhi persyaratan proteksi, biaya dan dapat mengurangi rasa sakit pada pinggang karena beratnya lebih ringan dibandingkan dengan apron yang sebelumnya ada.

2. Penahan Radiasi Gonad

Penahan radiasi gonad jenis kontak yang digunakan untuk radiologi diagnostik rutin harus mempunyai lempengan Pb, tebal sekurang – kurangnya setara 0,25 mm dan hendaknya mempunyai tebal setara lempengan Pb 0,5 mm pada 150 Kvp. Proteksi ini harus dengan ukuran dan bentuk yang sesuai untuk mencegah gonad secara keseluruhan dari paparan berkas utama.

3. Sarung Tangan Proteksi

Sarung tangan proteksi yang digunakan untuk fluoroskopi harus memberikan kesetaraan atenuasi sekurang – kurangnya 0,25 mm Pb pada 150 kVp. Proteksi ini harus dapat melindungi secara keseluruhan, mencakup jari dan pergelangan tangan.

4. Penahan Radiasi

- Penahan radiasi yang ditempatkan di antara operator atau panel control dan tabung sinar-X atau pasien harus pada posisi dan rancangan yang tepat sehingga dapat melindungi operator dari radiasi bocor dan hamburan. Penahan radiasi harus mempunyai ketebalan minimum yang setara dengan 1,5 mm Pb.

- Jendela pengamatan yang terpasang di penahan radiasi setidaknya mempunyai ketebalan yang setara dengan 1,5 mm Pb. Ketebalan yang setara dengan Pb tersebut harus tertera pada penahan radiasi dan jendela pengamat atau kaca intip.

5. Masker

Masker melindungi radiografer dari penularan dan infeksi nasokimia karena radiografer harus berinteraksi dengan pasien saat melakukan pemeriksaan. Masker berfungsi sebagai penyaring udara yang dihirup saat bekerja di tempat dengan kualitas udara buruk (misal berdebu, beracun, virus, dsb).

6. Sarung tangan ( hand gloves)

Sarung tangan adalah untuk melindungi radiografer dari infeksi nasokimia mengingat radiografer selalu melakukan pemeriksaan dan kontak langsung dengan pasien yang dapat menularkan penyakit / infeksi yang diderita pasien.

January 16, 2012

ULTRASONOGRAPHY (USG)

0 comments
Ultrasonography (USG) adalah pemeriksaan dalam bidang penunjang diagnostik yang memanfaatkan gelombang ultrasonik dengan frekuensi yang tinggi dalam menghasilkan imajing, tanpa menggunakan radiasi, tidak menimbulkan rasa sakit (non traumatic), tidak menimbulkan efek samping (non invasif), relatif murah, pemeriksaannya relatif cepat,dan persiapan pasien serta peralatannya relatif mudah. Gelombang suara ultrasound memiliki frekuensi lebih dari 20.000Hz, tapi yang dimamfaatkan dalam teknik ultrasonography (kedokteran) hanya gelombang suara dengan frekuensi 1-10 MHz

Ultrasound pertama kali  digunakan sesudah perang dunia I, dalam bentuk radar atau teknik sonar( sound navigation and ranging ) oleh Langevin tahun 1918 untuk mengetahui adanya ranjau-ranjau atau adanya kapal selam. Namun seiring berkembangnya zaman dan teknologi, ultrasond sekarang juga digunakan di bidang kesehatan dan disebut ultrasonography (USG). Ultrasound dalam bidang kesehatan bertujuan Untuk pemeriksaan organ-organ tubuh yg dapat diketahui bentuk, ukuran anatomis, gerakan, serta hubungannya dengan jaringan lain disekitarnya.

Sifat dasar ultrasound : 
-Sangat lambat bila melalui media yang bersifat gas, dan sangat cepat bila melalui media padat. 
-Semakin padat suatu media maka semakin cepat kecepatan suaranya.
-Apabila melalui suatu media maka akan terjadi atenuasi.

Komponen utama pesawat USG:

1. Pulser adalah alat yang berfungsi sebagai penghasil tegangan untuk merangsang kristal pada transducer dan membangkitkan pulsa ultrasound.
2. Transducer adalah alat yang berfungsi sebagai transmitter (pemancar) sekaligus sebagai recevier     (penerima). Dalam fungsinya sebagai pemancar, transducer merubah energi listrik menjadi energi mekanik berupa getaran suara berfrekuensi tinggi. Fungsi recevier pada transducer merubah energi mekanik menjadi listrik.
3. Tabung sinar katoda adalah alat untuk menampilkan gambaran ultrasound. Pada tabung ini terdapat tabung hampa udara yg memiliki beda potensial yang tinggi antara anoda dan katoda.
4. Printer adalah alat yang digunakan untuk mendokumentasikan gambaran yang ditampilkan oleh tabung sinar katoda.
5. Display adalah alat peraga hasil gambaran scanning pada TV monitor.


Prinsip kerja pesawat USG :

- Generator pulsa (oscilator) berfungsi sebagai penghasil gelombang listrik, kemudian oleh transducer diubah menjadi gelombang suara yang diteruskan ke medium.
-Apabila gelombang suara mengenai jaringan yang memiliki nilai akustik impedansi, maka gelombang suara akan dipantulkan kembali sebagai echo.
- Didalam media (jaringan) akan terjadi atenuasi, gema (echo) yang lebih jauh maka intensitasnya lebih lemah dibandingkan dari echo yg lebih superficial. Dan untuk memperoleh gambaran yang sama jelasnya disemua lapisan diperkuat dengan TGC (Time Gain Compensator).
- Pantulan gema akan ditangkap oleh transducer dan diteruskan ke amplifier untuk diperkuat. Dan gelombang ini kemudian diteruskan ke tabung sinar katoda melalui recevier seterusnya ditampilkan sebagai gambar di layar monitor.

Diagram peralatan USG


ket: akustik impedansi adalah kemampuan untuk melewatkan gelombang yang melaluinya. Semakin keras maka Impedansi akustiknya semakin besar pula

Hasil pemeriksaan ultrasonography: 

- Putih (hyperechoic/hyperechoigenic): tulang, otot padat.
- Abu-abu (putih+hitam) atau hypoechoic: hepar, otak, uterus,ren.
- Hitam (anechoic/anechoigenic): cairan dan sejenisnya


Kelemahan Ultrasonografi:

- Dapat ditahan oleh kertas tipis.
- Antara tranducer (probe) dengan kulit tidak dapat kontak dengan baik (interface) sehingga bias terjadi artefak sehingga perlu diberi jelly sebagai penghantar ultrasound.
- Bila ada celah dan ada udara, gelombang suara akan dihamburkan.

Kelebihan Ultrasonografi:

- Pasien dapat diperiksa langsung tanpa persiapan dan memberi hasil yang cepat.
- Bersifat non invasive sehingga dapat dilakukan pula pada anak-anak.
- Aman untuk pasien dan operator, karena tidak tergantung pada radiasi ionisasi.
- Member informasi dengan batas struktur organ sehingga member gambaran anatomis lebih besar dari informasi fuyngsi organ.
- Semua organ kecuali yang mengandung udara dapat ditentukan bentuk, ukuran, posisi, dan ruang interpasial.
- Dapat membedakan jenis jaringan dengan melihat perbedaan interaksi dengan gelombang suara.
- Dapat mendeteksi struktur yang bergerak seperti pulsasi fetal.












January 12, 2012

PROTEKSI RADIASI

1 comments
Proteksi Radiasi adalah suatu cabang ilmu pengetahuan yang berkaitan dengan teknik kesehatan lingkungan yaitu tentang proteksi yang perlu diberikan kepada seseorang atau sekelompok orang terhadap kemungkinan diperolehnya akibat negatif dari radiasi pengion. 

Filosofi proteksi radiasi yang dipakai sekarang ditetapkan oleh Komisi Internasional untuk Proteksi Radiasi (International Commission on Radiological Protection, ICRP) dalam suatu pernyataan yang mengatur pembatasan dosis radiasi, yang intinya sebagai berikut: 

1. Suatu kegiatan tidak akan dilakukan kecuali mempunyai keuntungan yang positif dibandingkan dengan risiko, yang dikenal sebagai azas justifikasi
2. Paparan radiasi diusahakan pada tingkat serendah mungkin yang bisa dicapai (as low as reasonably achievable, ALARA) dengan mempertimbangkan faktor ekonomi dan sosial, yang dikenal sebagai azas optimasi
3. Dosis perorangan tidak boleh melampaui batas yang direkomendasikan oleh ICRP untuk suatu lingkungan tertentu, yang dikenal sebagai azas limitasi

Konsep untuk mencapai suatu tingkat serendah mungkin merupakan hal mendasar yang perlu dikendalikan, tidak hanya untuk radiasi tetapi juga untuk semua hal yang membahayakan lingkungan. Mengingat bahwa tidak mungkin menghilangkan paparan radiasi secara keseluruhan, maka paparan radiasi diusahakan pada tingkat yang optimal sesuai dengan kebutuhan dan manfaat dari sisi kemanusiaan. 

Menurut Bapeten, nilai batas dosis dalam satu tahun untuk pekerja radiasi adalah 50 mSv (5rem), sedang untuk masyarakat umum adalah 5 mSv (500 mrem).

January 8, 2012

DOSIMETRI

0 comments

Dosimetri adalah ilmu yg mempelajari berbagai besaran dan satuan dosis radiasi. Sedangkan dosis adalah kuantitas dari proses yang ditinjau sebagai akibat radiasi mengenai materi. Faktor yang perlu diperhatikan disini yakni jenis radiasi dan bahan yang dikenainya. Apabila yang terkena radiasi adalah benda hidup, maka perlu juga diperhatikan tingkat kepekaan masing – masing jaringan tubuh terhadap radiasi, demikian halnya zat radioaktif sebagai sumber radiasi masuk kedalam tubuh, maka pola distribusi dan proses metabolisme yang terjadi perlu diperhatikan adalah sebagai berikut :

1. Paparan (X)

Paparan adalah kemampuan radiasi sinar X atau gamma untuk menimbulkan ionisasi di udara pada volume tertentu. Satuan paparan adalah coulomb/kilogram (C/kg).



Satuan paparan :
- SI = coulomb/kilogram (C/kg)
- Satuan lama = Rontgent (R)

1 C/kg adalah besar paparan yg dapat menyebabkan terbentuknya muatan listrik sebesar 1 coulomb pada suatu elemen volume udara yg mempunyai massa 1 kg.

Laju paparan

Laju paparan  adalah besar paparan per satuan waktu.

Satuan lajuan paparan :
-SI = Coulomb/kilogram-jam (C/kg-jam)
- Satuan lama = Rontgent/Jam (R/jam)


2. Dosis Serap (D)

Dosis serap adalah energi rata-rata yang diserap bahan per satuan massa bahan tersebut. Satuan dosis serap adalah joule/kg atau gray (Gy) .

Keterangan :
dE = energi yg diserap
dm = massa bahan

Satuan dosis serap:
- SI = joule/kg atau gray (Gy)
- Satuan lama : Radiation Absorbed Dose(rad)

1 gray (Gy) = 100 rad

Dosis serap berlaku untuk semua jenis radiasi dan semua jenis bahan yang dilalui.

Laju dosis serap

Laju dosis serap adalah besar dosis serap per satuan waktu
Satuan laju dosis serap:
- SI = joule/kg.jam (Gy/jam)
- Satuan lama = rad/jam

Hubungan Dosis Serap dengan Paparan dapat di rumuskan sebagai berikut :

Keterangan:
D = Dosis serap (rad)
X = Paparan (R)
f = Faktor konversi dari laju paparan ke laju dosis serap (rad/R)

Untuk medium udara f = 0,877 rad/R  
untuk medium bukan udara
 

Tabel : Faktor Konversi dari nilai penyinaran ke dosis
Dalam bidang proteksi radiasi praktis, f = 1 rad/R


3. Dosis Ekivalen (H)

Dosis ekivalen merupakan perkalian dosis serap dan faktor bobot radiasi. Faktor bobot radiasi adalah besaran yang merupakan kuantisasi radiasi untuk menimbulkan kerusakan pada jaringan/organ.

Satuan dosis ekivalen adalah
-SI = Sievert (Sv)
-Satuan lama = Radiation Equivalen Men (Rem)

Dimana 1 Sievert (Sv) = 100 rem

Dosis serap yang sama tetapi berasal dari jenis radiasi yang berbeda ternyata memberikan akibat atau efek yang berbeda pada sistem tubuh makhluk hidup. Makin besar daya ionisasi makin tinggi tingkat kerusakan biologi yang ditimbulkannya. Besaran yg merupakan jumlah radiasi untuk menimbulkan kerusakan pada jaringan/organ dinamakan Faktor bobot radiasi(Wr)

Faktor bobot radiasi sebelumnya disebut dengan faktor kualitas (QF), Sedang untuk aplikasi di bidang radiologi dinyatakan dengan relative biological effectiveness (RBE)

Rumus dosis ekivalen :

keterangan :
H = dosis ekivalen
D = dosis serap
Wr = Faktor bobot radias

Laju dosis ekivalen

Laju dosis ekivalen adalah dosis ekivalen per satuan waktu

Satuan laju dosis ekivalen :
-SI = sievert/jam (Sv/jam)
-Satuan lama = Radiation Equivalen Men/jam (Rem/jam)

Tabel. Faktor bobot radiasi untuk berbagai jenis radiasi 
 
 


4. Dosis Ekivalen Efektif (E)

Dosis efektif adalah besaran dosis yang memperhitungkan sensitifitas organ/jaringan. Tingkat kepekaan organ/jaringan tubuh terhadap efek stokastik akibat radiasi disebut faktor bobot organ/jaringan tubuh (Wt) . Dosis efektif merupakan hasil perkalian dosis ekivalen dengan faktor bobot jaringan/organ.

Pada penyinaran seluruh tubuh sedemikian sehingga setiap organ menerima dosis ekivalen yg sama,ternyata efek biologi pada setiap organ tersebut. Efek radiasi yg diperhitungkan adalah efek stokastik. Besaran dosis yg memperhitungkan sensitivitas organ disebut dosis ekivalen efektik(E) Tingkat kepekaan organ terhadap efek stokastik akibat radiasi disebut faktor bobot organ tubuh (Wr).


Satuan dosis ekivalen efektif:
-SI = sievert (Sv)
-Satuan lama = Radiation Equivalen Men (rem)


Laju dosis ekivalen efektif

Laju dosis ekivalen efektif adalah Dosis ekivalen efektif per satuan waktu.

Satuan laju dosis ekivalen efektif :
-SI = Sv/jam
-Satuan Lama = rem/jam

Tabel. Faktor bobot untuk berbagai organ dan jaringan tubuh


5.Dosis Koleltif

Dosis kolektif adalah dosis ekivalen atau dosis efektif yang digunakan apabila terjadi penyinaran pada sejumlah besar populasi peduduk. Penyinaran ini biasanya muncul akibat kecelakaan nuklir atau kecelakaan radiasi. Simbol besaran untuk dosis kolektif adalah ST dengan satuan sievert-man (Sv-man).

Dosis ekivalen/dosis efektif yg dipergunakan apabila terjadi penyinaran pada sejumlah besar populasi (penduduk). Penyinaran ini biasanya muncul apabila terjadi kecelakaan nuklir/radiasi. Dalam hal ini perlu diperhitungkan distribusi dosis radiasinya dan distribusi populasi yg terkena penyinaran.

Keterarangan :
H= Dosis ekivalen
p= jumlah populasi (penduduk)

Satuan dosis kolektif :
-SI = sievert-man
-Satuan lama = rem-man


Email subscribe

Silakan masukan email sobat untuk berlangganan artikel GRATISS!!

Copyright © 2011 RADIOLOGI SCIENCES, All Right Reserved. Design by Java Templates Powered by Blogger

Tweet